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Recent advances in next generation sequencing has helped identify millions of  somatic mutations in tumors 

from thousands of  cancer patients. The vast collection and wide availability of  DNA mutation data have 

encouraged the use of  computational and machine learning approaches in identifying cancer driver gene 

candidates for use in precision oncology. However, the accurate identification of  cancer driver genes versus 

the more frequent but incidental passenger genes remains a difficult task. The mutation data used to train 

the machine learning algorithm is large and complex; it is prone to errors and imbalanced in classes. These 

caveats and the lack of  a gold standard driver gene list make it difficult to objectively assess and validate the 

accuracy of  various computational methods. This study aims to compare choices of  feature selection, data 

preparation, and machine learning methods in order to gain better insight on classification of  driver and 

passenger genes. To address the previously stated problems with standard datasets of  human mutational 

profiles, we develop an in-sillico training set of  somatic mutation data. We simultate the accumulation of  

cancer in over 5000 patients and curate their DNA in a similar fashion to biological data. Here, we present 

our progress in creating and validating machine learning models, trained on our synthetic biological dataset, 

to more reliably identify unknown cancer genes as drivers or passengers. 

Cells acquire about one mutation in every 30 million base pairs during cell division processes. While most of  

these are harmless passenger mutations, mutations that lead to the gain or loss of  cellular function drive the 

formation of  cancer and are therefore classified as driver mutations. Driver genes, where driver mutations occur, 

are either oncogenes (activation of  function) or tumor suppressor genes (loss of  cancer prevention function).

Data Exploration and Feature Selection

Future Work

We first implemented and evaluated "naive", of 

simple, driver gene classifiers. The low 

precision and recall scores reflected the 

methods' failure to differentiate passengers from 

drivers. Under the assumption that our features 

do not lack correlation with whether a gene is a 

driver or passenger, we identified two 

characteristics of the dataset we must account 

for: the (1) nonlinearity of patterns and the (2) 

class imbalance between passengers (95% 

incidence) and drivers (2.5% OG, 2.5% TSG)
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Improved Methods: Evaluation and Comparison with Existing Classifiers

Thirteen features were extracted for each gene to train the classification methods with. Features 1-3 measure the frequency of  

each type of  mutations in our synthetic data: missense, nonsense, and silent. Feature 4 is the frequency of  recurrent missense 

mutations. Feature 5 to 6 are missense-to-silent and nonsilent-to-silent ratios. Feature 7 is the fraction of  cells the mutations 

happen in, and feature 8 is gene length. Features 9 and 10 represent missense position entropy and nonsense position entropy. 

Features 11 to 13 are p-values of  each mutation type's frequency, measuring the counts' significance through comparison with 10 

mutation sets created through Monte Carlo simulations. 

Figure 1: Definition of  driver genes and the creation of  our synthetic dataset.

feature1        feature2        feature3        feature4       feature5        feature6       feature7        feature8        feature9      feature10      feature11      feature12      feature13

fe
at

ur
e1

   
 f

ea
tu

re
2 

   
fe

at
ur

e3
   

 f
ea

tu
re

4 
  f

ea
tu

re
5 

  f
ea

tu
re

6 
   

fe
at

ur
e7

  
fe

at
ur

e8
   

 f
ea

tu
re

9 
  f

ea
tu

re
10

  f
ea

tu
re

11
 f

ea
tu

re
12

  f
ea

tu
re

13

Altrock, P. M., Liu, L. L. & Michor, F. The mathematics of  cancer: Integrating quantitative models. 
Nat. Rev. Cancer 15, 730–745 (2015). 

Bozic, I. et al. Accumulation of  driver and passenger mutations during tumor progression. Proc. Natl. 
Acad. Sci. 107, 18545–18550 (2010). 

Vogelstein, B., Papadopoulos, N. & Velculescu, V. E. S1D_Cancer Genome Landscapes. Science 

Whiteside, T. L. Tricks tumors use to escape from immune control. Oral Oncol. 45, e119–e123 (2009). 

Tokheim, C. J., Papadopoulos, N., Kinzler, K. W., Vogelstein, B. & Karchin, R. Evaluating the 
evaluation of  cancer driver genes. Proc. Natl. Acad. Sci. 113, 14330–14335 (2016). 

Wilkie, K. P. & Hahnfeldt, P. Mathematical models of  immune-induced cancer dormancy and the 
emergence of  immune evasion Mathematical models of  immune-induced cancer dormancy and the 
emergence of  immune evasion. Interface Focus 3, (2013). 

Bailey, M. H. et al. Comprehensive Characterization of  Cancer Driver Genes and Mutations. Cell 173, 
371–385.e18 (2018). 

Hanahan, D. & Weinberg, R. A. Hallmarks of  Cancer: The Next Generation. Cell 100, (2000). 

The availability of  next-generation sequencing data has allowed the development of  computational 

classifiers of  driver genes, a task relevant in precision oncology. However, these cannot be objectively 

assessed in precision due to the absence of  a definite driver gene list. In response, we synthesized our own 

“gold standard” data set, by simulating the accumulation of  cancer according to a mathematical model of  

the cancer system (see equations below). The resulting dataset contains the mutational profiles of  500,000 

cancer cells, each harboring 10,000 genes with an average length of  100 base pairs. 

Table: Performance of  improved driver gene predicting methods on the synthetic biological dataset.

Algorithm
# of  significant 

genes
Fraction overlap 
with driver list

Precision Recall F1 Score Consistency

RF: RUSBoost 956 0.85 0.6102 0.4092 0.4899 0.046

RF: AdaBoost 2088 0.75 0.4487 0.4592 0.4539 0.06

SVM: Gaussian 2036 0.208 0.613 0.3733 0.464 0.06

We implemented (1) SVM with a Gaussian kernel and (2) random forest to handle the nonlinearly structured data. As for the problem 

of class imbalance, we experimented with random forest with two adaptive boosting methods that iteratively resample data points that 

have been misclassified in previous iterations, which in our case are likely the rarer driver genes. In addition to precision and recall, we 

evaluated our new models by their fraction overlap with the list of driver genes in our dataset and 'consistency', computed as the overlap 

between the list of top 100 drivers each predicted by classifiers trained on random halves of the data. 'Significant' genes are defined by 

their corresponding driver scores (probability of being a driver according to random forest) having low p-values, which are computed in 

comparison to the ten Monte Carlo-simulated datasets  (Table 1).

The RUSBoosted random forest best classifies driver genes among the classifiers evaluated, successfully identifying 85% of known 

drivers. 

 

Table 1: Performance of driver gene classification methods on the synthetic biological dataset

N = Normal cells, M = Cancerous (mutated) cells, I = Immune surveillance and response to cancer growth. The population of  
normal and cancerous cells are functions of  the amount of  oxygen in the system. The cancer cells gain selective advantages over time, 
escaping immune control and increasing their net proliferation rates (also see Fig. 1).

Algorithm
# of  significant 

genes
Fraction overlap 
with driver list

Consistency

2020+ 208 0.4 0.749
TUSON 243 0.37 0.727

OncodriveFML 679 0.12 0.514
MutsigCV 158 0.37 0.505

OncodriveClust 586 0.07 0.232
MuSiC 1975 0.05 0.869

ActiveDriver 417 0.06 0.19
OncodriveFML 2600 0.04 0.506

Table 2: Performance of  known driver gene classification methods on 
the pancancer somatic mutation dataset

However, in comparison with the 

performance of known driver 

classification methods, our method's 

consistency is lower than those of the 

other classifiers (Table 2). This may 

imply that the drivers in our synthetic 

biological dataset are more similar to 

each other than are the drivers of the 

pancancer dataset. Alternatively, the low 

consistency may be boosted by 

integrating other features in the machine 

learning method. 

The most important feature in the RUSBoosted Random Forest Algorithm is the 
missense count p-value; this likely contributes to the classification of  oncogenes, 
which by definition harbor mutations on recurrent spots in the gene.  

The focus of our future work will be on improving the consistency and lowering the recall of our 

current random forest classifier. Based on the ranks of feature importance, the p-values, which 

measure the significance of some mutation frequency, are meaningful indicators of driver genes. 

We may experiment with other machine learning algorithms known to well handle nonlinear, 

imbalanced data; these include neural networks and the positive unlabeled (PU) learning algorithm.

To improve the reality of the synthetic biological data, we may refine the mathematical equations 

that dictate the characteristics of cell growth, mutation, apoptosis, and necrosis, which then can be 

simulated to create a new dataset more closely resembling real-life human mutational profiles.


